### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-Anilino-4,6-dimethylpyrimidinium chloroacetate

# Jia-Cheng Li,<sup>a,b</sup> Xue-Qing Qiu,<sup>a</sup> Yu-Hong Feng<sup>b</sup> and Qiang Lin<sup>b</sup>\*

<sup>a</sup>School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and <sup>b</sup>Key Laboratory of Tropical Biological Resources of the Chinese Education Ministry, Hainan University, Haikou 570228, People's Republic of China Correspondence e-mail: ljcfyh@263.net

Received 13 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.141; data-to-parameter ratio = 13.5.

In the crystal structure of the title compound,  $C_{12}H_{14}N_3^{+}$ .  $C_2H_2ClO_2^{-}$ , the chloroacetate anion is linked to the *N*-(4,6-dimethylpyrimidin-2-yl)aniline cation by N-H···O hydrogen bonding. Within the cation, the pyrimidine ring is twisted with respect to the phenyl ring by a dihedral angle of 7.59 (4)°.

#### **Related literature**

For general background, see: Xue *et al.* (2000); Li *et al.* (1996); Stock *et al.* (1997).



#### **Experimental**

Crystal data  $C_{12}H_{14}N_3^+ \cdot C_2H_2ClO_2^ M_r = 293.75$ 

Tetragonal,  $P4_2/n$ *a* = 19.604 (4) Å c = 7.542 (3) Å V = 2898.6 (13) Å<sup>3</sup> Z = 8Mo  $K\alpha$  radiation

#### Data collection

Bruker APEX area-dectector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002)  $T_{\rm min} = 0.839, T_{\rm max} = 0.917$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$   $wR(F^2) = 0.141$  S = 1.032541 reflections 188 parameters  $\mu = 0.27 \text{ mm}^{-1}$ T = 293 (2) K $0.68 \times 0.35 \times 0.33 \text{ mm}$ 

9030 measured reflections 2541 independent reflections 1991 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.030$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$                            | D-H              | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - H \cdots A$ |
|---------------------------------------------------|------------------|-------------------------|------------------------|------------------|
| $N1 - H1A \cdots O1^{i}$ $N2 - H2A \cdots O2^{i}$ | 0.86<br>0.98 (4) | 1.98<br>1.61 (4)        | 2.833 (3)<br>2.572 (2) | 173<br>166 (4)   |
|                                                   |                  |                         |                        |                  |

Symmetry code: (i) x, y, z + 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The wark was supported financially by the Natural Science Foundation of Hainan Province, China (Nos. 20303, 80405). The authors also thank Miss N. Jia for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2368).

#### References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, B., Lin, B.-D., Liu, C.-L. & Liu, W.-C. (1996). J. Synth. Chem. 4, 176–179. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

Stock, D., Briggs, G. & Simpson, D. J. (1997). World Patent WO 9 740 682.

Xue, S. J., Wang, T. & Liao, Z. R. (2000). Chin. J. Org. Chem. 20, 731-734.

supplementary materials

Acta Cryst. (2008). E64, o318 [doi:10.1107/S1600536807064422]

#### 2-Anilino-4,6-dimethylpyrimidinium chloroacetate

#### J.-C. Li, X.-Q. Qiu, Y.-H. Feng and Q. Lin

#### Comment

The 2-anilino-4,6-dimethylpyrimidine has a good and wide fungicidal activity (Xue *et al.*, 2000; Li *et al.*, 1996). The pyriminethanil could be combined with certain acids to form pyrimethanil salts that have a reduced vapor pressure that increased the persistence of the compounds on the crop to be protected from fungal attack, and increased activity (Stock *et al.*, 1997).

The crystal of the title compound consists of 2-phenylamino-4,6-dimethylpyrimidinium cations and chloroacetate anions (Fig. 1). All bond lengths and angles are normal. The atoms of the pyrimidine ring are coplanar, the largest deviation from the mean plane being 0.005 (2)Å (N3). The dihedral angle between the pyrimidine and phenyl rings is 7.59 (4)°. The cation links with the anion *via* N—H···O hydrogen bonding (Table 1, Fig. 2).

#### Experimental

The title compound was prepared by the reaction of *N*-(4,6-dimethylpyrimidin-2-yl)aniline (0.01 mol) and chloroacetic acid (0.01 mol) in anhydrous alcohol at room temperature for 1 h. Single crystals of suitable for X-ray measurements were obtained by by slow evaporation of anhydrous alcohol at room temperature.

#### Refinement

The H atoms attached to N2 was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, N—H = 0.86 Å, and included in final cycles of refinement using a riding model, with  $U_{iso}(H) = 1.2U_{eq}(C,N)$  or  $1.5U_{eq}(C)$  for methyl H atoms.

#### **Figures**



Fig. 1. The molecular structure of the title compound with 35% probability ellipsoid.



Fig. 2. The molecular packing of the title compound viewed along the c axis with 35% probability ellipsoid. Hydrogen bonds are shown as dashed lines.

#### 2-Anilino-4,6-dimethylpyrimidinium chloroacetate

Crystal data

| $C_{12}H_{14}N_3^+ C_2H_2ClO_2^-$ | Z = 8                                        |
|-----------------------------------|----------------------------------------------|
| $M_r = 293.75$                    | $F_{000} = 1232$                             |
| Tetragonal, P4 <sub>2</sub> /n    | $D_{\rm x} = 1.346 {\rm Mg} {\rm m}^{-3}$    |
| Hall symbol: -P 4bc               | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 19.604 (4)  Å                 | Cell parameters from 2794 reflections        |
| b = 19.604 (4)  Å                 | $\theta = 2.6 - 24.3^{\circ}$                |
| c = 7.542 (3) Å                   | $\mu = 0.27 \text{ mm}^{-1}$                 |
| $\alpha = 90^{\circ}$             | T = 293 (2)  K                               |
| $\beta = 90^{\circ}$              | Block, colorless                             |
| $\gamma = 90^{\circ}$             | $0.68 \times 0.35 \times 0.33 \text{ mm}$    |
| $V = 2898.6 (13) \text{ Å}^3$     |                                              |

#### Data collection

| Bruker APEX area-dectector diffractometer                      | 2541 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1991 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.030$                  |
| T = 293(2)  K                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\phi$ and $\omega$ -scan                                      | $\theta_{\min} = 2.1^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2002) | $h = -23 \rightarrow 7$                |
| $T_{\min} = 0.839, T_{\max} = 0.917$                           | $k = -21 \rightarrow 21$               |
| 9030 measured reflections                                      | $l = -8 \rightarrow 8$                 |

#### Refinement

Refinement on  $F^2$ H atoms treated by a mixture of<br/>independent and constrained refinementLeast-squares matrix: full $w = 1/[\sigma^2(F_o^2) + (0.0747P)^2 + 1.1159P]$ <br/>where  $P = (F_o^2 + 2F_c^2)/3$  $R[F^2 > 2\sigma(F^2)] = 0.047$  $(\Delta/\sigma)_{max} = 0.003$  $wR(F^2) = 0.141$  $\Delta \rho_{max} = 0.25$  e Å<sup>-3</sup>

| <i>S</i> = 1.03  | $\Delta \rho_{\rm min} = -0.37 \ e \ \text{\AA}^{-3}$ |
|------------------|-------------------------------------------------------|
| 2541 reflections | Extinction correction: SHELXL                         |
| 188 parameters   | Extinction coefficient: 0.025 (2)                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|      | x            | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| Cl1  | 0.87158 (3)  | 0.61011 (4)  | 0.05379 (12) | 0.0780 (3)                |
| N2   | 0.56643 (10) | 0.61105 (9)  | 0.9030 (2)   | 0.0464 (5)                |
| N3   | 0.49318 (9)  | 0.52683 (9)  | 0.7827 (2)   | 0.0478 (5)                |
| 01   | 0.73448 (9)  | 0.56305 (9)  | -0.0534 (3)  | 0.0768 (6)                |
| C7   | 0.55484 (10) | 0.54846 (11) | 0.8321 (3)   | 0.0426 (5)                |
| C10  | 0.44090 (11) | 0.57048 (12) | 0.8040 (3)   | 0.0483 (6)                |
| O2   | 0.68383 (9)  | 0.66274 (9)  | -0.0258 (3)  | 0.0831 (7)                |
| C1   | 0.61714 (11) | 0.44082 (11) | 0.7549 (3)   | 0.0442 (5)                |
| N1   | 0.61051 (9)  | 0.50841 (9)  | 0.8161 (3)   | 0.0490 (5)                |
| H1A  | 0.6481       | 0.5272       | 0.8486       | 0.059*                    |
| C13  | 0.73486 (12) | 0.62373 (12) | -0.0210 (3)  | 0.0541 (6)                |
| C8   | 0.51423 (12) | 0.65435 (11) | 0.9262 (3)   | 0.0484 (6)                |
| C6   | 0.68113 (12) | 0.41108 (12) | 0.7776 (3)   | 0.0543 (6)                |
| Н6   | 0.7162       | 0.4360       | 0.8296       | 0.065*                    |
| C2   | 0.56552 (12) | 0.40296 (12) | 0.6751 (3)   | 0.0528 (6)                |
| H2   | 0.5227       | 0.4222       | 0.6575       | 0.063*                    |
| C3   | 0.57816 (14) | 0.33658 (12) | 0.6220 (3)   | 0.0607 (7)                |
| Н3   | 0.5434       | 0.3113       | 0.5698       | 0.073*                    |
| С9   | 0.44996 (11) | 0.63484 (12) | 0.8768 (3)   | 0.0525 (6)                |
| Н9   | 0.4131       | 0.6641       | 0.8918       | 0.063*                    |
| C14  | 0.79893 (13) | 0.66082 (13) | 0.0334 (5)   | 0.0778 (9)                |
| H14A | 0.7906       | 0.6831       | 0.1462       | 0.093*                    |
| H14B | 0.8081       | 0.6962       | -0.0532      | 0.093*                    |
| C5   | 0.69275 (14) | 0.34523 (13) | 0.7238 (4)   | 0.0681 (8)                |
| Н5   | 0.7356       | 0.3258       | 0.7401       | 0.082*                    |
| C4   | 0.64120 (14) | 0.30741 (13) | 0.6452 (4)   | 0.0680 (8)                |
| H4   | 0.6492       | 0.2628       | 0.6087       | 0.082*                    |
| C12  | 0.37230 (12) | 0.54599 (14) | 0.7465 (4)   | 0.0608 (7)                |
| H12A | 0.3705       | 0.5444       | 0.6194       | 0.091*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H12B | 0.3379       | 0.5766       | 0.7896     | 0.091*      |
|------|--------------|--------------|------------|-------------|
| H12C | 0.3643       | 0.5012       | 0.7936     | 0.091*      |
| C11  | 0.53038 (14) | 0.72231 (12) | 1.0070 (4) | 0.0633 (7)  |
| H11A | 0.5505       | 0.7157       | 1.1217     | 0.095*      |
| H11B | 0.4892       | 0.7484       | 1.0190     | 0.095*      |
| H11C | 0.5618       | 0.7464       | 0.9321     | 0.095*      |
| H2A  | 0.614 (2)    | 0.6267 (18)  | 0.915 (5)  | 0.118 (14)* |
|      |              |              |            |             |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1 | 0.0474 (4)  | 0.0703 (5)  | 0.1163 (7)  | 0.0027 (3)   | -0.0106 (4)  | 0.0018 (4)   |
| N2  | 0.0411 (10) | 0.0406 (10) | 0.0575 (12) | -0.0030 (8)  | -0.0024 (8)  | -0.0031 (8)  |
| N3  | 0.0413 (10) | 0.0492 (11) | 0.0528 (11) | -0.0028 (8)  | -0.0031 (8)  | -0.0022 (8)  |
| 01  | 0.0539 (11) | 0.0468 (10) | 0.1298 (18) | -0.0024 (8)  | -0.0187 (10) | -0.0190 (10) |
| C7  | 0.0395 (11) | 0.0417 (12) | 0.0467 (12) | -0.0033 (9)  | -0.0014 (9)  | 0.0022 (9)   |
| C10 | 0.0415 (12) | 0.0543 (14) | 0.0490 (13) | -0.0009 (10) | -0.0019 (10) | 0.0032 (10)  |
| 02  | 0.0454 (10) | 0.0489 (10) | 0.155 (2)   | 0.0019 (8)   | -0.0176 (11) | -0.0166 (11) |
| C1  | 0.0457 (12) | 0.0406 (12) | 0.0463 (12) | -0.0048 (9)  | 0.0017 (9)   | 0.0004 (9)   |
| N1  | 0.0375 (10) | 0.0430 (10) | 0.0665 (13) | -0.0031 (8)  | -0.0052 (8)  | -0.0055 (9)  |
| C13 | 0.0460 (13) | 0.0427 (14) | 0.0734 (16) | -0.0030 (10) | -0.0047 (11) | -0.0029 (11) |
| C8  | 0.0491 (13) | 0.0442 (12) | 0.0520 (14) | -0.0003 (10) | 0.0002 (10)  | 0.0010 (10)  |
| C6  | 0.0452 (13) | 0.0476 (13) | 0.0701 (16) | -0.0016 (10) | -0.0045 (11) | -0.0058 (11) |
| C2  | 0.0447 (13) | 0.0535 (14) | 0.0603 (15) | -0.0049 (10) | -0.0022 (11) | -0.0064 (11) |
| C3  | 0.0593 (15) | 0.0519 (14) | 0.0707 (17) | -0.0116 (12) | -0.0018 (13) | -0.0128 (12) |
| C9  | 0.0427 (13) | 0.0512 (13) | 0.0635 (15) | 0.0040 (10)  | -0.0017 (11) | -0.0016 (11) |
| C14 | 0.0483 (15) | 0.0464 (14) | 0.139 (3)   | -0.0015 (11) | -0.0165 (16) | -0.0052 (16) |
| C5  | 0.0552 (15) | 0.0543 (15) | 0.095 (2)   | 0.0090 (12)  | -0.0048 (14) | -0.0090 (14) |
| C4  | 0.0685 (17) | 0.0450 (14) | 0.091 (2)   | -0.0015 (12) | 0.0033 (15)  | -0.0144 (13) |
| C12 | 0.0430 (13) | 0.0668 (16) | 0.0727 (17) | -0.0024 (11) | -0.0064 (12) | -0.0068 (13) |
| C11 | 0.0610 (15) | 0.0468 (14) | 0.0821 (18) | 0.0018 (11)  | -0.0048 (14) | -0.0108 (12) |

### Geometric parameters (Å, °)

| Cl1—C14 | 1.744 (3) | C6—C5    | 1.372 (3) |
|---------|-----------|----------|-----------|
| N2—C8   | 1.341 (3) | С6—Н6    | 0.9300    |
| N2—C7   | 1.358 (3) | C2—C3    | 1.384 (3) |
| N2—H2A  | 0.98 (4)  | С2—Н2    | 0.9300    |
| N3—C7   | 1.334 (3) | C3—C4    | 1.373 (4) |
| N3—C10  | 1.345 (3) | С3—Н3    | 0.9300    |
| O1—C13  | 1.214 (3) | С9—Н9    | 0.9300    |
| C7—N1   | 1.350 (3) | C14—H14A | 0.9700    |
| С10—С9  | 1.387 (3) | C14—H14B | 0.9700    |
| C10-C12 | 1.492 (3) | C5—C4    | 1.386 (4) |
| O2—C13  | 1.260 (3) | С5—Н5    | 0.9300    |
| C1—C2   | 1.392 (3) | C4—H4    | 0.9300    |
| C1—C6   | 1.394 (3) | C12—H12A | 0.9600    |
| C1—N1   | 1.409 (3) | C12—H12B | 0.9600    |
| N1—H1A  | 0.8600    | C12—H12C | 0.9600    |
|         |           |          |           |

| C13—C14                       | 1.508 (3)   | C11—H11A       | 0            | ).9600     |
|-------------------------------|-------------|----------------|--------------|------------|
| C8—C9                         | 1.368 (3)   | C11—H11B       | 0            | ).9600     |
| C8—C11                        | 1.499 (3)   | C11—H11C       | 0            | ).9600     |
| C8—N2—C7                      | 119.73 (19) | С4—С3—Н3       | 1            | 19.5       |
| C8—N2—H2A                     | 121 (2)     | С2—С3—Н3       | 1            | 19.5       |
| C7—N2—H2A                     | 118 (2)     | C8—C9—C10      | 1            | 18.7 (2)   |
| C7—N3—C10                     | 117.06 (19) | С8—С9—Н9       | 1            | 20.7       |
| N3—C7—N1                      | 121.52 (19) | С10—С9—Н9      | 1            | 20.7       |
| N3—C7—N2                      | 123.28 (19) | C13—C14—Cl1    | 1            | 15.43 (18) |
| N1—C7—N2                      | 115.19 (18) | C13—C14—H14A   | 1            | 08.4       |
| N3—C10—C9                     | 121.9 (2)   | Cl1—C14—H14A   | 1            | 08.4       |
| N3—C10—C12                    | 116.6 (2)   | C13—C14—H14B   | 1            | 08.4       |
| C9—C10—C12                    | 121.5 (2)   | Cl1—C14—H14B   | 1            | 08.4       |
| C2—C1—C6                      | 119.0 (2)   | H14A—C14—H14B  | 1            | 07.5       |
| C2—C1—N1                      | 125.2 (2)   | C6—C5—C4       | 1            | 20.6 (2)   |
| C6—C1—N1                      | 115.86 (19) | С6—С5—Н5       | 1            | 19.7       |
| C7—N1—C1                      | 130.60 (18) | С4—С5—Н5       | 1            | 19.7       |
| C7—N1—H1A                     | 114.7       | C3—C4—C5       | 1            | 19.2 (2)   |
| C1—N1—H1A                     | 114.7       | С3—С4—Н4       | 1            | 20.4       |
| O1—C13—O2                     | 125.7 (2)   | С5—С4—Н4       | 1            | 20.4       |
| O1—C13—C14                    | 122.1 (2)   | C10-C12-H12A   | 1            | 09.5       |
| O2-C13-C14                    | 112.1 (2)   | C10-C12-H12B   | 1            | 09.5       |
| N2—C8—C9                      | 119.4 (2)   | H12A—C12—H12B  | 1            | 09.5       |
| N2-C8-C11                     | 117.0 (2)   | C10-C12-H12C   | 1            | 09.5       |
| C9—C8—C11                     | 123.6 (2)   | H12A-C12-H12C  | 1            | 09.5       |
| C5—C6—C1                      | 120.4 (2)   | H12B-C12-H12C  | 1            | 09.5       |
| С5—С6—Н6                      | 119.8       | C8—C11—H11A    | 1            | 09.5       |
| С1—С6—Н6                      | 119.8       | C8—C11—H11B    | 1            | 09.5       |
| C3—C2—C1                      | 119.8 (2)   | H11A—C11—H11B  | 1            | 09.5       |
| С3—С2—Н2                      | 120.1       | C8—C11—H11C    | 1            | 09.5       |
| С1—С2—Н2                      | 120.1       | H11A—C11—H11C  | 1            | 09.5       |
| C4—C3—C2                      | 121.1 (2)   | H11B-C11-H11C  | 1            | 09.5       |
| C10—N3—C7—N1                  | 179.9 (2)   | N1-C1-C6-C5    | 1            | 79.5 (2)   |
| C10—N3—C7—N2                  | 0.7 (3)     | C6—C1—C2—C3    | 0            | ).8 (4)    |
| C8—N2—C7—N3                   | 0.1 (3)     | N1-C1-C2-C3    | -            | -179.4 (2) |
| C8—N2—C7—N1                   | -179.2 (2)  | C1—C2—C3—C4    | -            | -0.6 (4)   |
| C7—N3—C10—C9                  | -1.1 (3)    | N2-C8-C9-C10   | 0            | ).1 (3)    |
| C7—N3—C10—C12                 | 179.4 (2)   | C11—C8—C9—C10  | -            | -179.7 (2) |
| N3—C7—N1—C1                   | -1.7 (4)    | N3-C10-C9-C8   | 0            | ).7 (4)    |
| N2—C7—N1—C1                   | 177.6 (2)   | С12—С10—С9—С8  | -            | -179.7 (2) |
| C2—C1—N1—C7                   | 8.5 (4)     | O1-C13-C14-Cl1 | -            | -2.1 (4)   |
| C6—C1—N1—C7                   | -171.7 (2)  | O2-C13-C14-Cl1 | 1            | 77.1 (2)   |
| C7—N2—C8—C9                   | -0.4 (3)    | C1—C6—C5—C4    | 0            | 0.3 (4)    |
| C7—N2—C8—C11                  | 179.3 (2)   | C2—C3—C4—C5    | 0            | 0.2 (4)    |
| C2—C1—C6—C5                   | -0.7 (4)    | C6—C5—C4—C3    | -            | -0.1 (4)   |
| Hydrogen-bond geometry (Å, °) |             |                |              |            |
| D—H···A                       | <i>D</i> —Н | H···A          | $D \cdots A$ | D—H··· $A$ |

# supplementary materials

| $N1-H1A\cdotsO1^{1}$              | 0.86     | 1.98     | 2.833 (3) | 173     |
|-----------------------------------|----------|----------|-----------|---------|
| N2—H2A···O2 <sup>i</sup>          | 0.98 (4) | 1.61 (4) | 2.572 (2) | 166 (4) |
| Symmetry codes: (i) $x, y, z+1$ . |          |          |           |         |



Fig. 1



